论文标题

在深度耦合方面的通量Qubit-LC振荡器电路的哈密顿量

Hamiltonian of a flux qubit-LC oscillator circuit in the deep-strong-coupling regime

论文作者

Yoshihara, Fumiki, Ashhab, Sahel, Fuse, Tomoko, Bamba, Motoaki, Semba, Kouichi

论文摘要

我们得出了一个超导电路的哈密顿量,该电路包含一个单约瑟夫森 - 结量量子Qubit,并将其与LC振荡器耦合,并比较了衍生的Hamiltonian与量子rabi hamiltonian的衍生电路,该电路与量子振荡量的量子rabi hamiltonian相结合。我们表明,哈密顿电路和量子性兔汉密尔顿人之间有一个简单,直观的对应关系。尽管整个频谱的总体转变,但即使在偶数强度大于Qubit频率和振动器的频率时,即使量子强度大,即使在Qubit-oscillator coultion中,量子的量子强度大于Qubit-couriptim in the Deepplong-congepling righting righting righting rightime countring righting councyplong,虽然量子rabi hamiltonian仍然可以很好地安装哈密顿电路的能量水平结构。我们还表明,尽管可以通过单一转换为包含电容耦合术语的哈密顿量转换来转换,但不能由量子性兔Hamiltonian的变体近似产生的哈密顿量,该量子使用类似程序来绘制电路变量,以将电路变量映射到Pauli和HarmonkoneComcill oscill occillator operator cool cool,甚至可以映射到电路上。通量和电荷量表之间的这种差异是从量子汉密尔顿特征态的特性中遵循的。

We derive the Hamiltonian of a superconducting circuit that comprises a single-Josephson-junction flux qubit inductively coupled to an LC oscillator, and we compare the derived circuit Hamiltonian with the quantum Rabi Hamiltonian, which describes a two-level system coupled to a harmonic oscillator. We show that there is a simple, intuitive correspondence between the circuit Hamiltonian and the quantum Rabi Hamiltonian. While there is an overall shift of the entire spectrum, the energy level structure of the circuit Hamiltonian up to the seventh excited states can still be fitted well by the quantum Rabi Hamiltonian even in the case where the coupling strength is larger than the frequencies of the qubit and the oscillator, i.e., when the qubit-oscillator circuit is in the deep-strong-coupling regime. We also show that although the circuit Hamiltonian can be transformed via a unitary transformation to a Hamiltonian containing a capacitive coupling term, the resulting circuit Hamiltonian cannot be approximated by the variant of the quantum Rabi Hamiltonian that is obtained using an analogous procedure for mapping the circuit variables onto Pauli and harmonic oscillator operators, even for relatively weak coupling. This difference between the flux and charge gauges follows from the properties of the qubit Hamiltonian eigenstates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源