论文标题

在晶状体气体模型中的热力学崩溃,用于两组式的渗透颗粒系统

Thermodynamic collapse in a lattice-gas model for a two-component system of penetrable particles

论文作者

Frydel, Derek, Levin, Yan

论文摘要

我们研究了具有相同位置和最近邻里相互作用的正方形基板上的可渗透颗粒的晶格 - 气体模型。渗透性意味着占据单个格子位点的颗粒数量是无限的,并且该模型本身旨在简单地表示在逼真的软性系统中遇到的可渗透粒子。我们的特定重点是二元混合物,其中相同物种的颗粒和相反物种的颗粒相互吸引。由于渗透率和每个位点的无限占用,该系统表现出热力学崩溃,在模拟中,该系统的出现是由于散布在整个系统中的极度致密簇的出现,并具有群集$ e \ propto -n^2 $的能量,其中$ n $是群集中的颗粒数。将粒子系统转换为自旋系统后,在较大的密度限制中,哈密顿恢复了一种简单的谐波形式,从而导致过去使用的离散的高斯模型,用于建模接口的粗糙过渡。对于有限密度,由于存在非谐波项,该系统是使用变异高斯模型近似的。

We study a lattice-gas model of penetrable particles on a square-lattice substrate with same-site and nearest-neighbor interactions. Penetrability implies that the number of particles occupying a single lattice site is unlimited and the model itself is intended as a simple representation of penetrable particles encountered in realistic soft-matter systems. Our specific focus is on a binary mixture, where particles of the same species repel and those of the opposite species attract each other. As a consequence of penetrability and the unlimited occupation of each site, the system exhibits thermodynamic collapse, which in simulations is manifested by an emergence of extremely dense clusters scattered throughout the system with energy of a cluster $E\propto -n^2$ where $n$ is the number of particles in a cluster. After transforming a particle system into a spin system, in the large density limit the Hamiltonian recovers a simple harmonic form, resulting in the discrete Gaussian model used in the past to model the roughening transition of interfaces. For finite densities, due to the presence of a non-harmonic term, the system is approximated using a variational Gaussian model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源