论文标题
随机Navier-在3D薄域上Stokes方程
Stochastic Navier--Stokes equations on a 3D thin domain
论文作者
论文摘要
由添加噪声驱动的薄三维结构域中的随机Navier - 薄域中的Stokes方程。随机Navier的Martingale解决方案的收敛 - 薄的三维域中的Stokes方程与2D随机Navier的独特Martingale解 - 随着膜的厚度消失,Stochastic Navier的独特溶液是Stochastic Navier方程。因此,我们证明3D Navier的近似值 - 稳定方程,该方程是由随机强迫在应用程序中相应的二维设置驱动的。
Stochastic Navier--Stokes equations in a thin three-dimensional domain are considered, driven by additive noise. The convergence of martingale solution of the stochastic Navier--Stokes equations in a thin three-dimensional domain to the unique martingale solution of the 2D stochastic Navier--Stokes equations, as the thickness of the film vanishes, is established. Hence, we justify the approximation of 3D Navier--Stokes equations driven by random forcing by its corresponding two-dimensional setting in applications.