论文标题

通过辅助信息映射的贝叶斯深度学习:地统计学的新时代?

Bayesian deep learning for mapping via auxiliary information: a new era for geostatistics?

论文作者

Kirkwood, Charlie, Economou, Theo, Pugeault, Nicolas

论文摘要

对于地理空间建​​模和映射任务,Kriging的变体 - 南非矿业工程师Danie Krige开发的空间插值技术 - 长期以来一直被视为已建立的地理方法。但是,Kriging及其变体(例如回归kriging,其中包括作为协变量的辅助变量或衍生物)是相对限制性的模型,并且缺乏在过去十年中深层神经网络在我们过去十年中提供的能力。其中的主要内容是特征学习 - 学习过滤器以识别诸如图像之类的网格数据中特定于任务模式的能力。在这里,我们通过展示深度神经网络如何自动学习点采样的目标变量和网格辅助变量(例如远程感知提供的辅助变量)之间的复杂关系,从而证明了在地理统计上下文中特征学习的力量,并在此过程中产生了所选目标变量的详细映射。同时,为了满足需要精心校准概率的决策者的需求,我们通过称为蒙特卡洛辍学的贝叶斯近似来获得不确定性估计。在我们的示例中,我们从点采样的测定数据中生成了一个国家规模的概率地球化学图,并提供了由地形高程网格提供的辅助信息。与传统的地统计方法不同,辅助可变网格被馈入我们深层的神经网络RAW。无需提供地形衍生物(例如斜率角,粗糙度等),因为深神经网络能够学习这些衍生物,并且根据必要的必要而任意学习这些衍生物,以最大程度地提高预测性能。我们希望我们的结果能够提高人们对贝叶斯深度学习的适用性及其特征学习能力的认识,这些学习能力对于不确定性很重要的大规模地统计应用。

For geospatial modelling and mapping tasks, variants of kriging - the spatial interpolation technique developed by South African mining engineer Danie Krige - have long been regarded as the established geostatistical methods. However, kriging and its variants (such as regression kriging, in which auxiliary variables or derivatives of these are included as covariates) are relatively restrictive models and lack capabilities that have been afforded to us in the last decade by deep neural networks. Principal among these is feature learning - the ability to learn filters to recognise task-specific patterns in gridded data such as images. Here we demonstrate the power of feature learning in a geostatistical context, by showing how deep neural networks can automatically learn the complex relationships between point-sampled target variables and gridded auxiliary variables (such as those provided by remote sensing), and in doing so produce detailed maps of chosen target variables. At the same time, in order to cater for the needs of decision makers who require well-calibrated probabilities, we obtain uncertainty estimates via a Bayesian approximation known as Monte Carlo dropout. In our example, we produce a national-scale probabilistic geochemical map from point-sampled assay data, with auxiliary information provided by a terrain elevation grid. Unlike traditional geostatistical approaches, auxiliary variable grids are fed into our deep neural network raw. There is no need to provide terrain derivatives (e.g. slope angles, roughness, etc) because the deep neural network is capable of learning these and arbitrarily more complex derivatives as necessary to maximise predictive performance. We hope our results will raise awareness of the suitability of Bayesian deep learning - and its feature learning capabilities - for large-scale geostatistical applications where uncertainty matters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源