论文标题

关于Ulrich Vector Bundle的Chern类的积极性

On the positivity of the first Chern class of an Ulrich vector bundle

论文作者

Lopez, Angelo Felice

论文摘要

我们研究了平滑的n维品种$ x \ subseteq \ mathbb p^n $在平滑的n维品种上的等级向量束E的阳性。我们证明,$ C_1(e)$对X中的线路不包含的每个子各种都非常积极。特别是如果X不覆盖线,则E很大,$ C_1(e)^n \ ge r^n $。此外,我们在表面上用$ c_1(e)^2 = 0 $和$ c_1(e)^2 = 0 $或$ c_1(e)(e)^3 = 0 $在三倍上(除了一些例外),用$ c_1(e)^2 = 0 $分类等级r ulrich vector捆绑包。

We study the positivity of the first Chern class of a rank r Ulrich vector bundle E on a smooth n-dimensional variety $X \subseteq \mathbb P^N$. We prove that $c_1(E)$ is very positive on every subvariety not contained in the union of lines in X. In particular if X is not covered by lines, then E is big and $c_1(E)^n \ge r^n$. Moreover we classify rank r Ulrich vector bundles E with $c_1(E)^2=0$ on surfaces and with $c_1(E)^2=0$ or $c_1(E)^3=0$ on threefolds (with some exceptions).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源