论文标题
在边缘计算环境中,概率的天际线查询处理不确定的数据流
Probabilistic Skyline Query Processing over Uncertain Data Streams in Edge Computing Environments
论文作者
论文摘要
随着技术的发展,我们生活中产生的数据越来越快,并且各种应用程序需要处理的数据量变得极为巨大。因此,我们需要为分析数据和提取有价值的信息而付出更多的精力。云计算过去是解决大量数据分析问题的好技术。但是,在物联网(IoT)流行的时代,将传感数据传输到云中进行集中数据分析将消耗大量无线通信和网络传输成本。为了解决上述问题,Edge计算已成为一个有前途的解决方案。在本文中,我们提出了一种用于处理边缘计算环境中不确定数据流的概率天际线查询的新算法。我们使用第二个天际线的概念来过滤数据,而数据不太可能是天际线的结果。此外,边缘服务器仅发送更新云服务器上全局分析结果所需的信息,这将大大减少网络传输的数据量。结果表明,与二维数据的蛮力方法相比,我们提出的方法不仅将响应时间降低了50%以上,而且还保持了高维数据的领先处理速度。
With the advancement of technology, the data generated in our lives is getting faster and faster, and the amount of data that various applications need to process becomes extremely huge. Therefore, we need to put more effort into analyzing data and extracting valuable information. Cloud computing used to be a good technology to solve a large number of data analysis problems. However, in the era of the popularity of the Internet of Things (IoT), transmitting sensing data back to the cloud for centralized data analysis will consume a lot of wireless communication and network transmission costs. To solve the above problems, edge computing has become a promising solution. In this paper, we propose a new algorithm for processing probabilistic skyline queries over uncertain data streams in an edge computing environment. We use the concept of a second skyline set to filter data that is unlikely to be the result of the skyline. Besides, the edge server only sends the information needed to update the global analysis results on the cloud server, which will greatly reduce the amount of data transmitted over the network. The results show that our proposed method not only reduces the response time by more than 50% compared with the brute force method on two-dimensional data but also maintains the leading processing speed on high-dimensional data.