论文标题

基于机器学习的采样方法,用于探索晶体中间质物种的局部能量最小值

Machine-learning-based sampling method for exploring local energy minima of interstitial species in a crystal

论文作者

Toyoura, Kazuaki, Kanayama, Kansei

论文摘要

已经提出了一种有效的基于机器学习的方法与常规的局部优化技术结合使用,用于探索晶体中构成物种的局部能量最小值。在提出的方法中,从搜索空间中的给定可行集合中对局部优化的有效初始点进行采样。有效的初始点在这里定义为网格点,该网格点最有可能通过局部优化收敛到新的局部能量最小值,并且/或位于能量盆地之间边界附近。具体而言,可行集合中的每个网格点都由预测的标签分类,该标签指示网格点收敛到的局部能量最小值。分类器将在每次迭代中创建和更新,使用较早迭代的本地优化信息,该信息基于支持向量机(SVM)。 SVM分类器使用我们的原始内核函数,设计为反映宿主晶体和间质物种的对称性。与观察到的分类边界上最遥远的未观察到的点是局部优化的下一个初始点。提出的方法应用于三种模型情况,即六驼峰骆驼背函数,锆层中层酸中的质子,带有原骨钙钛矿结构,以及具有单腹结构的硫酸兰谷植物中的水分子,以证明该建议方法的高性能。

An efficient machine-learning-based method combined with a conventional local optimization technique has been proposed for exploring local energy minima of interstitial species in a crystal. In the proposed method, an effective initial point for local optimization is sampled at each iteration from a given feasible set in the search space. The effective initial point is here defined as the grid point that most likely converges to a new local energy minimum by local optimization and/or is located in the vicinity of the boundaries between energy basins. Specifically, every grid point in the feasible set is classified by the predicted label indicating the local energy minimum that the grid point converges to. The classifier is created and updated at every iteration using the already-known information on the local optimizations at the earlier iterations, which is based on the support vector machine (SVM). The SVM classifier uses our original kernel function designed as reflecting the symmetries of both host crystal and interstitial species. The most distant unobserved point on the classification boundaries from the observed points is sampled as the next initial point for local optimization. The proposed method is applied to three model cases, i.e., the six-hump camelback function, a proton in strontium zirconate with the orthorhombic perovskite structure, and a water molecule in lanthanum sulfate with the monoclinic structure, to demonstrate the high performance of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源