论文标题
熵和加热内核在Ricci流动背景上
Entropy and heat kernel bounds on a Ricci flow background
论文作者
论文摘要
在本文中,我们建立了RICCI流的新几何和分析界限,这将构成[BAM20A,BAM20B]中Ricci流的紧凑性,部分规律性和结构理论的基础。 边界最佳到一个仅取决于尺寸和可能较低标量曲率结合的常数。在流动由爱因斯坦指标组成的特殊情况下,这些边界与从下方界定的RICCI曲率空间的最佳界限一致。此外,我们的边界是局部的,从某种意义上说,如果一个界限取决于基础流的崩溃,那么我们能够使用仅基于所讨论点的尖头NASH熵来量化此依赖性。 除其他事项外,我们将显示以下界限:距离球的上和下体积边界,尖头纳什熵在其空间和时间上的基础上的依赖性,尖端的上高斯在加热内核上绑定,并在其导数上绑定和$ l^1 $-poinCincaré不平等。这些边界的证据将部分依赖于一个单调性公式用于概念,称为共轭热核的方差。 我们还将得出有关尖头NASH熵在其底线上的依赖性的估计值,该基台上是最佳的。这些将使我们能够在某种意义上显示附近的时空中的点具有可比的nash熵。因此,尖头的纳什熵是测量RICCI流量的局部崩溃的大量数量 我们的结果暗示了本地$ \ varepsilon $ regularity定理,改善了Hein和Naber的结果。我们的一些结果也适用于超级Ricci流。
In this paper we establish new geometric and analytic bounds for Ricci flows, which will form the basis of a compactness, partial regularity and structure theory for Ricci flows in [Bam20a, Bam20b]. The bounds are optimal up to a constant that only depends on the dimension and possibly a lower scalar curvature bound. In the special case in which the flow consists of Einstein metrics, these bounds agree with the optimal bounds for spaces with Ricci curvature bounded from below. Moreover, our bounds are local in the sense that if a bound depends on the collapsedness of the underlying flow, then we are able to quantify this dependence using the pointed Nash entropy based only at the point in question. Among other things, we will show the following bounds: Upper and lower volume bounds for distance balls, dependence of the pointed Nash entropy on its basepoint in space and time, pointwise upper Gaussian bound on the heat kernel and a bound on its derivative and an $L^1$-Poincaré inequality. The proofs of these bounds will, in part, rely on a monotonicity formula for a notion, called variance of conjugate heat kernels. We will also derive estimates concerning the dependence of the pointed Nash entropy on its basepoint, which are asymptotically optimal. These will allow us to show that points in spacetime that are nearby in a certain sense have comparable pointed Nash entropy. Hence the pointed Nash entropy is a good quantity to measure local collapsedness of a Ricci flow Our results imply a local $\varepsilon$-regularity theorem, improving a result of Hein and Naber. Some of our results also hold for super Ricci flows.