论文标题

使用机器学习估算观察数据中的异质生存治疗效果

Estimating heterogeneous survival treatment effect in observational data using machine learning

论文作者

Hu, Liangyuan, Ji, Jiayi, Li, Fan

论文摘要

估计观察数据中异质治疗效果的方法主要集中在连续或二元期结果上,并且对生存结果的审查相对较少。在反事实框架中使用灵活的机器学习方法是一种有前途的方法,可以解决由于复杂的个人特征而挑战的方法,需要对此进行量身定制的治疗方法。为了评估最近生存的机器学习方法的工作特征,以估计治疗效应异质性并为更好的实践提供综合性,我们进行了一项全面的模拟研究,介绍了广泛的环境,描述了混杂的异质生存治疗效果和不同程度的协变量重叠。我们的结果表明,在加速失效时间模型(AFT-BART-NP)框架内,非参数贝叶斯添加剂回归树始终在偏见,精度和预期的遗憾方面产生最佳性能。此外,当协变量重叠至少适度时,船尾-Bart-NP的可靠间隔估计器可为单个生存治疗效果提供接近名义频繁的覆盖范围。包括非参数估计的倾向得分作为船尾-Bart-NP模型公式中的额外固定协变量,可以进一步提高其效率和频繁的覆盖范围。最后,我们通过一项全面的案例研究证明了柔性因果机学习估计量的应用,该案例研究研究了两种放射疗法方法的异质生存效应,用于局部高危前列腺癌。

Methods for estimating heterogeneous treatment effect in observational data have largely focused on continuous or binary outcomes, and have been relatively less vetted with survival outcomes. Using flexible machine learning methods in the counterfactual framework is a promising approach to address challenges due to complex individual characteristics, to which treatments need to be tailored. To evaluate the operating characteristics of recent survival machine learning methods for the estimation of treatment effect heterogeneity and inform better practice, we carry out a comprehensive simulation study presenting a wide range of settings describing confounded heterogeneous survival treatment effects and varying degrees of covariate overlap. Our results suggest that the nonparametric Bayesian Additive Regression Trees within the framework of accelerated failure time model (AFT-BART-NP) consistently yields the best performance, in terms of bias, precision and expected regret. Moreover, the credible interval estimators from AFT-BART-NP provide close to nominal frequentist coverage for the individual survival treatment effect when the covariate overlap is at least moderate. Including a non-parametrically estimated propensity score as an additional fixed covariate in the AFT-BART-NP model formulation can further improve its efficiency and frequentist coverage. Finally, we demonstrate the application of flexible causal machine learning estimators through a comprehensive case study examining the heterogeneous survival effects of two radiotherapy approaches for localized high-risk prostate cancer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源