论文标题
使用参数化回归特征和自动调节运动控制
Adaptive Shape Servoing of Elastic Rods using Parameterized Regression Features and Auto-Tuning Motion Controls
论文作者
论文摘要
可变形线性对象的机器人操纵在各种现实世界中显示出很大的潜力。但是,由于对象的复杂非线性和高维配置,它提出了许多挑战。在本文中,我们提出了一个新的形状宣誓框架,以通过视觉反馈自动操纵弹性杆。我们的新方法使用参数化的回归特征来计算量化对象形状的紧凑(低维)特征向量,从而可以建立明确的形状伺服环。为了自动将杆变形为所需的形状,提出的自适应控制器迭代地估计了机器人运动与相对形状变化之间的差异转换;这种有价值的能力允许使用未知的机械模型有效地操纵对象。引入了一种自动调节算法,以根据最佳性能标准实时调整机器人的塑造动作。为了验证所提出的框架,提出了一项具有视觉引导机器人操纵器的详细实验研究。
The robotic manipulation of deformable linear objects has shown great potential in a wide range of real-world applications. However, it presents many challenges due to the objects' complex nonlinearity and high-dimensional configuration. In this paper, we propose a new shape servoing framework to automatically manipulate elastic rods through visual feedback. Our new method uses parameterized regression features to compute a compact (low-dimensional) feature vector that quantifies the object's shape, thus, enabling to establish an explicit shape servo-loop. To automatically deform the rod into a desired shape, the proposed adaptive controller iteratively estimates the differential transformation between the robot's motion and the relative shape changes; This valuable capability allows to effectively manipulate objects with unknown mechanical models. An auto-tuning algorithm is introduced to adjust the robot's shaping motions in real-time based on optimal performance criteria. To validate the proposed framework, a detailed experimental study with vision-guided robotic manipulators is presented.