论文标题
SPL-MLL:选择用于多标签学习的可预测地标
SPL-MLL: Selecting Predictable Landmarks for Multi-Label Learning
论文作者
论文摘要
尽管取得了重大进展,但由于不同标签之间相关性的复杂性,多标签分类仍然具有挑战性。此外,对输入和某些(乏味)类之间的关系进行建模进一步增加了准确预测所有可能标签的困难。在这项工作中,我们建议选择一小部分标签作为地标,根据输入(可预测)易于预测,并可以很好地恢复其他可能的标签(代表性)。与现有的方法不同的方法不同,将具有里程碑意义的选择和地标预测以两步方式分开,拟议的算法被称为选择可预测的多标签学习(SPL-MLL)的可预测地标(SPL-MLL),共同在统一的框架中共同进行地标选择,地标预测和标签恢复,以确保对所选地标的代表性和预测层次。我们采用交替方向方法(ADM)来解决我们的问题。关于现实世界数据集的实证研究表明,我们的方法比其他最先进的方法实现了优越的分类性能。
Although significant progress achieved, multi-label classification is still challenging due to the complexity of correlations among different labels. Furthermore, modeling the relationships between input and some (dull) classes further increases the difficulty of accurately predicting all possible labels. In this work, we propose to select a small subset of labels as landmarks which are easy to predict according to input (predictable) and can well recover the other possible labels (representative). Different from existing methods which separate the landmark selection and landmark prediction in the 2-step manner, the proposed algorithm, termed Selecting Predictable Landmarks for Multi-Label Learning (SPL-MLL), jointly conducts landmark selection, landmark prediction, and label recovery in a unified framework, to ensure both the representativeness and predictableness for selected landmarks. We employ the Alternating Direction Method (ADM) to solve our problem. Empirical studies on real-world datasets show that our method achieves superior classification performance over other state-of-the-art methods.