论文标题
抗致分析数
Antipalindromic numbers
论文作者
论文摘要
当然,每个人都听说过pelindromes:倒退时保持不变的单词。例如皮划艇,雷达或转子。数学家对回文数字感兴趣:积极的整数,其在某个整数基础上的扩展是一种alnindrome。研究了以下问题:alindromic素数,alindromic正方形和更高的力量,多个基于基础的本文粒子数等。在本文中,我们定义和研究抗疾病粒子数:积极的整数,其在某个整数基础中的扩展为抗palintrimentrome。我们提出了有关分裂性和抗致命性素质,抗疾病式正方形和更高的力量以及多基础抗致分析数的新结果。我们为所有研究的问题提供用户友好的应用程序。
Everybody has certainly heard about palindromes: words that stay the same when read backwards. For instance kayak, radar, or rotor. Mathematicians are interested in palindromic numbers: positive integers whose expansion in a certain integer base is a palindrome. The following problems are studied: palindromic primes, palindromic squares and higher powers, multibased palindromic numbers, etc. In this paper, we define and study antipalindromic numbers: positive integers whose expansion in a certain integer base is an antipalindrome. We present new results concerning divisibility and antipalindromic primes, antipalindromic squares and higher powers, and multibased antipalindromic numbers. We provide a user-friendly application for all studied questions.