论文标题
深度搜索查询意图理解
Deep Search Query Intent Understanding
论文作者
论文摘要
了解用户在搜索背后的查询意图对于现代搜索引擎成功至关重要。准确的查询意图预测使搜索引擎通过从更相关的类别中渲染结果来更好地满足用户的需求。本文旨在提供一个全面的学习框架,以在搜索的不同阶段对查询意图进行建模。我们专注于1)使用字符级模型在Typeahead搜索中键入查询时预测用户的意图; 2)用于完整查询的准确单词级别的意图预测模型。试验了各种用于查询文本理解的深度学习组件。离线评估和在线A/B测试实验表明,所提出的方法可有效理解查询意图,有效地扩展在线搜索系统。
Understanding a user's query intent behind a search is critical for modern search engine success. Accurate query intent prediction allows the search engine to better serve the user's need by rendering results from more relevant categories. This paper aims to provide a comprehensive learning framework for modeling query intent under different stages of a search. We focus on the design for 1) predicting users' intents as they type in queries on-the-fly in typeahead search using character-level models; and 2) accurate word-level intent prediction models for complete queries. Various deep learning components for query text understanding are experimented. Offline evaluation and online A/B test experiments show that the proposed methods are effective in understanding query intent and efficient to scale for online search systems.