论文标题
基于动力学熵的分布函数非马克斯维尔的度量:理论和仿真
Kinetic Entropy-Based Measures of Distribution Function Non-Maxwellianity: Theory and Simulations
论文作者
论文摘要
我们研究了基于动力学熵的测量值,即等离子体中分布函数的非麦克斯韦性,即基于熵的局部分布函数从相关的麦克斯韦分布函数的出发量,其密度,大量流量和温度与局部分布相同。首先,我们考虑了Kaufmann和Paterson先前使用的一种形式[{\ it J.〜Geophys。〜Res。,} {\ BF 114},A00D04(2009)],评估其属性并得出等效形式。为了提供对IT的定量理解,我们为三种常见的非马克斯韦血浆分布函数提供了分析表达式。我们表明,这种非Maxwellianity度量的特征不良,包括它可以在各种物理限制中差异并阐明差异的原因。然后,我们基于速度空间的熵密度引入了一种新的基于动力学熵的非马克斯维尔度度量,该熵密度具有有意义的物理解释,并且不会差异。我们使用二维抗平行磁重新连接的无碰撞粒子中的粒子模拟来评估基于动力学熵的非马克斯韦度措施。我们表明,非零非马克斯维利亚性的区域与磁重新连接过程中发生的动力学过程有关。我们还表明,模拟的非Maxwellianity与分析分析相似的预测非常吻合。这些结果对于应用可能很重要,因为非马克斯韦尔性可用于识别动力学尺度物理学区域或等离子体中的耗散量增加。
We investigate kinetic entropy-based measures of the non-Maxwellianity of distribution functions in plasmas, i.e., entropy-based measures of the departure of a local distribution function from an associated Maxwellian distribution function with the same density, bulk flow, and temperature as the local distribution. First, we consider a form previously employed by Kaufmann and Paterson [{\it J.~Geophys.~Res.,} {\bf 114}, A00D04 (2009)], assessing its properties and deriving equivalent forms. To provide a quantitative understanding of it, we derive analytical expressions for three common non-Maxwellian plasma distribution functions. We show that there are undesirable features of this non-Maxwellianity measure including that it can diverge in various physical limits and elucidate the reason for the divergence. We then introduce a new kinetic entropy-based non-Maxwellianity measure based on the velocity-space kinetic entropy density, which has a meaningful physical interpretation and does not diverge. We use collisionless particle-in-cell simulations of two-dimensional anti-parallel magnetic reconnection to assess the kinetic entropy-based non-Maxwellianity measures. We show that regions of non-zero non-Maxwellianity are linked to kinetic processes occurring during magnetic reconnection. We also show the simulated non-Maxwellianity agrees reasonably well with predictions for distributions resembling those calculated analytically. These results can be important for applications, as non-Maxwellianity can be used to identify regions of kinetic-scale physics or increased dissipation in plasmas.