论文标题
通过定制措施对群体模棱两可的运营商的有限表示
On the finite representation of group equivariant operators via permutant measures
论文作者
论文摘要
$ g $ equivariant运营商的研究非常有趣,可以解释和理解神经网络的体系结构。在本文中,我们表明每个线性$ g $ equivariant运算符可以通过适当的定制措施生产,前提是该组$ g $在有限的信号域$ x $上进行了运输。此结果使得在有限设置中构建线性$ G $ equivariant运算符的新方法。
The study of $G$-equivariant operators is of great interest to explain and understand the architecture of neural networks. In this paper we show that each linear $G$-equivariant operator can be produced by a suitable permutant measure, provided that the group $G$ transitively acts on a finite signal domain $X$. This result makes available a new method to build linear $G$-equivariant operators in the finite setting.