论文标题

在排斥DLVO相互作用下沉积稀释颗粒悬浮液的流体动力学模拟

Hydrodynamic simulations of sedimenting dilute particle suspensions under repulsive DLVO interactions

论文作者

Jung, David, Uttinger, Maximilian Johannes, Malgaretti, Paolo, Peukert, Wolfgang, Walter, Johannes, Harting, Jens

论文摘要

我们提出了指南,以估计静电抑制在稀释颗粒悬浮液中的影响。我们的结果基于一系列粒子半径,debye长度和粒子浓度的联合兰格文动力学和晶格Boltzmann模拟。它们显示了依赖浓度的沉积速度的斜率$ k $与平均粒子颗粒距离标准化的静电排斥的范围$χ$之间的简单关系。当$χ\至0 $时,粒子彼此之间相互交互,而$ k = 6.55 $,如Batchelor理论所预测的那样。随着$χ$的增加,$ k $同样增加,好像粒子半径以$χ$成比例增加到最大$χ= 0.4 $。在$χ= 0.4-1 $的范围内,$ k $在浓度依赖性常数上呈指数式放松,并与有序粒子分布的已知结果一致。同时,径向分布函数从无序气体样形式转变为液体样形式。功率定律符合浓度依赖性沉积速度,同样,作为$χ$的函数产生了一个简单的主曲线,从1到1/3的逐步过渡左右左右$χ= 0.6 $。

We present guidelines to estimate the effect of electrostatic repulsion in sedimenting dilute particle suspensions. Our results are based on combined Langevin dynamics and lattice Boltzmann simulations for a range of particle radii, Debye lengths and particle concentrations. They show a simple relationship between the slope $K$ of the concentration-dependent sedimentation velocity and the range $χ$ of the electrostatic repulsion normalized by the average particle-particle distance. When $χ\to 0$, the particles are too far away from each other to interact electrostatically and $K=6.55$ as predicted by the theory of Batchelor. As $χ$ increases, $K$ likewise increases as if the particle radius increased in proportion to $χ$ up to a maximum around $χ=0.4$. Over the range $χ=0.4-1$, $K$ relaxes exponentially to a concentration-dependent constant consistent with known results for ordered particle distributions. Meanwhile the radial distribution function transitions from a disordered gas-like to a liquid-like form. Power law fits to the concentration-dependent sedimentation velocity similarly yield a simple master curve for the exponent as a function of $χ$, with a step-like transition from 1 to 1/3 centered around $χ= 0.6$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源