论文标题

DSDNET:深层结构化自动驾驶网络

DSDNet: Deep Structured self-Driving Network

论文作者

Zeng, Wenyuan, Wang, Shenlong, Liao, Renjie, Chen, Yun, Yang, Bin, Urtasun, Raquel

论文摘要

在本文中,我们提出了深层结构化的自动驾驶网络(DSDNET),该网络通过单个神经网络执行对象检测,运动预测和运动计划。为了实现这一目标,我们开发了一个基于结构的能量模型,该模型考虑了参与者之间的相互作用,并产生了社会一致的多模式未来预测。此外,DSDNET明确利用了通过使用结构化的计划成本来计划安全的演员的预测分布。我们的基于样本的公式使我们能够克服连续随机变量的概率推断的困难。许多大型自动驾驶数据集的实验表明,我们的模型大大优于最先进的。

In this paper, we propose the Deep Structured self-Driving Network (DSDNet), which performs object detection, motion prediction, and motion planning with a single neural network. Towards this goal, we develop a deep structured energy based model which considers the interactions between actors and produces socially consistent multimodal future predictions. Furthermore, DSDNet explicitly exploits the predicted future distributions of actors to plan a safe maneuver by using a structured planning cost. Our sample-based formulation allows us to overcome the difficulty in probabilistic inference of continuous random variables. Experiments on a number of large-scale self driving datasets demonstrate that our model significantly outperforms the state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源