论文标题
使用3D RMHD模拟安静的太阳连接大气特性和综合减震波发射
Connecting Atmospheric Properties and Synthetic Emission of Shock Waves Using 3D RMHD Simulations of Quiet Sun
论文作者
论文摘要
我们分析了在高分辨率的3D辐射MHD模拟中的冲击波演变及其合成发射特性的演变。模拟模拟了12.8x12.8x15.2毫米静音区域的动力学(包括上部对流区的5.2 mm层和从光电机到Corona的10 mm气氛),最初均匀的垂直磁场为10 g,自然而然地由对流流动驱动。我们合成了由SDO/AIA望远镜观察到的Iris卫星和EUV发射观察到的Mg II和C II光谱线。使用RH1.5D辐射传输代码和温度响应函数在数值和仪器分辨率上都获得了合成观测。我们发现,C II 1334.5虹膜线的多普勒速度跳跃和335 A SDO/AIA通道的发射相对增强是冲击波沉积到Corona(分别具有Kendall's $τ$ 0.59和0.38和0.38和0.38)的最佳代理。在冲击波传播过程中,线和极端紫外线的合成发射彼此相关。所有研究的冲击都大多是流体动力学(即,水平场携带的磁能为$ \ leq {} $ 2.6%的所有事件焓的2.6%),在低圆锥体中,马赫数> 1.0-1.2。该研究揭示了通过使用IRIS和SDO/AIA感应观察结果,可以通过冲击波诊断出通过冲击波进入太阳能电晕及其其他特性的可能性。
We analyze the evolution of shock waves in high-resolution 3D radiative MHD simulations of the quiet Sun and their synthetic emission characteristics. The simulations model the dynamics of a 12.8x12.8x15.2 Mm quiet-Sun region (including a 5.2 Mm layer of the upper convection zone and a 10 Mm atmosphere from the photosphere to corona) with an initially uniform vertical magnetic field of 10 G, naturally driven by convective flows. We synthesize the Mg II and C II spectral lines observed by the IRIS satellite and EUV emission observed by the SDO/AIA telescope. Synthetic observations are obtained using the RH1.5D radiative transfer code and temperature response functions at both the numerical and instrumental resolutions. We found that the Doppler velocity jumps of the C II 1334.5 A IRIS line and a relative enhancement of the emission in the 335 A SDO/AIA channel are the best proxies for the enthalpy deposited by shock waves into the corona (with Kendall's $τ$ correlation coefficients of 0.59 and 0.38, respectively). The synthetic emission of the lines and extreme ultraviolet passbands are correlated with each other during the shock wave propagation. All studied shocks are mostly hydrodynamic (i.e., the magnetic energy carried by horizontal fields is $\leq{}$2.6% of the enthalpy for all events) and have Mach numbers > 1.0-1.2 in the low corona. The study reveals the possibility of diagnosing energy transport by shock waves into the solar corona, as well as their other properties, by using IRIS and SDO/AIA sensing observations.