论文标题

通用通信中信息流的图形方法(扩展版)

A diagrammatic approach to information flow in encrypted communication (extended version)

论文作者

Hines, Peter

论文摘要

我们提供示意工具,以推理有关加密通信中信息流的原因。特别是,我们有兴趣推论信息流(通信或其他方式)发生的地方,并充分考虑所有可能的路径。核心数学概念是使用单个分类图来对基础数学,参与者的认知知识以及参与者之间的潜力或实际交流进行建模。其中的一个关键部分是“正确性”或“一致性”标准,该标准可确保我们准确,充分说明可能已知信息的不同路线(即通信和 /或计算)。我们演示了如何应用这种形式主义来回答有关沟通场景的问题,我们在其中拥有有关参与者及其互动的部分信息。同样,我们展示了如何分析协议或通信变化的后果,并列举发生事件的不同顺序。我们使用各种形式的Diffie-Hellman密钥交换来说明这些技术。但是,它们完全是一般的。我们在附录中说明了如何以相同的方式分析非交通密码学的其他协议。

We give diagrammatic tools to reason about information flow within encrypted communication. In particular, we are interested in deducing where information flow (communication or otherwise) has taken place, and fully accounting for all possible paths. The core mathematical concept is using a single categorical diagram to model the underlying mathematics, the epistemic knowledge of the participants, and (implicitly) the potential or actual communication between participants. A key part of this is a `correctness' or `consistency' criterion that ensures we accurately & fully account for the distinct routes by which information may come to be known (i.e. communication and / or calculation). We demonstrate how this formalism may be applied to answer questions about communication scenarios where we have the partial information about the participants and their interactions. Similarly, we show how to analyse the consequences of changes to protocols or communications, and to enumerate the distinct orders in which events may have occurred. We use various forms of Diffie-Hellman key exchange as an illustration of these techniques. However, they are entirely general; we illustrate in an appendix how other protocols from non-commutative cryptography may be analysed in the same manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源