论文标题

构建与不可压缩流和应用产生的偏斜缸有关的最大功能

Construction of Maximal Functions associated with Skewed Cylinders Generated by Incompressible Flows and Applications

论文作者

Yang, Jincheng

论文摘要

我们构建了与偏斜缸系列相关的最大功能。这些圆柱体被定义为流动流动流的轨迹的管状邻域,出现在流体方程的研究中,例如Navier-Stokes方程和Euler方程。我们将最大功能从属于这些气缸,并表明它是薄型$(1,1)$和强型$(p,p)$的类型薄弱的函数。作为应用程序,我们为三维Navier-Stokes方程的平滑解决方案的较高衍生品估计提供了替代证明。

We construct a maximal function associated with a family of skewed cylinders. These cylinders, which are defined as tubular neighborhoods of trajectories of a mollified flow, appear in the study of fluid equations such as the Navier-Stokes equations and the Euler equations. We define a maximal function subordinate to these cylinders, and show it is of weak type $(1, 1)$ and strong type $(p, p)$ by a covering lemma. As an application, we give an alternative proof for the higher derivatives estimate of smooth solutions to the three-dimensional Navier-Stokes equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源