论文标题
(符号)叶子和(5d higgs)分支机构中的nesian热带雨林
(Symplectic) Leaves and (5d Higgs) Branches in the Poly(go)nesian Tropical Rain Forest
论文作者
论文摘要
我们从实现为广义的感谢您的多边形(或点图)中得出了5D超符号理论的希格斯分支的结构。这种方法是由$(P,Q)$ 5 Brane-Web系统的双重热带曲线分解的动机。我们定义了边缘着色,该颜色将广义的感谢您的多边形分解成精制的Minkowski亚物质分类总和,从中我们从中计算出磁颤动。然后用5D Higgs分支对磁颤动的库仑分支进行猜测。此外,从部分决议中,我们确定了希格斯分支的齐剪叶,从而确定了整个叶面结构。在严格的曲折多边形的情况下,这种方法将Calabi-yau奇异性变形的描述减少为Minkowski总和。
We derive the structure of the Higgs branch of 5d superconformal field theories or gauge theories from their realization as a generalized toric polygon (or dot diagram). This approach is motivated by a dual, tropical curve decomposition of the $(p,q)$ 5-brane-web system. We define an edge coloring, which provides a decomposition of the generalized toric polygon into a refined Minkowski sum of sub-polygons, from which we compute the magnetic quiver. The Coulomb branch of the magnetic quiver is then conjecturally identified with the 5d Higgs branch. Furthermore, from partial resolutions, we identify the symplectic leaves of the Higgs branch and thereby the entire foliation structure. In the case of strictly toric polygons, this approach reduces to the description of deformations of the Calabi-Yau singularities in terms of Minkowski sums.