论文标题

关于在polytope上找到二次函数的局部最小化的复杂性

On the complexity of finding a local minimizer of a quadratic function over a polytope

论文作者

Ahmadi, Amir Ali, Zhang, Jeffrey

论文摘要

我们表明,除非p = np,否则不可能有多项式时间算法在欧几里得距离内找到一个点$ c^n $(对于任何常数$ c \ ge 0 $)的本地最小化器,具有$ n $ n $变量的二次功能。这个结果(即使有$ c = 0 $)回答了1992年出现在复杂性理论中的七个开放性问题的列表中,以进行数值优化。我们的证明技术还意味着,确定二次函数是否在(无限)的多面体上具有局部最小化的问题,并且决定是否具有四分之一的多项式具有局部最小化器的问题。

We show that unless P=NP, there cannot be a polynomial-time algorithm that finds a point within Euclidean distance $c^n$ (for any constant $c \ge 0$) of a local minimizer of an $n$-variate quadratic function over a polytope. This result (even with $c=0$) answers a question of Pardalos and Vavasis that appeared in 1992 on a list of seven open problems in complexity theory for numerical optimization. Our proof technique also implies that the problem of deciding whether a quadratic function has a local minimizer over an (unbounded) polyhedron, and that of deciding if a quartic polynomial has a local minimizer are NP-hard.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源