论文标题

交通系统的时间相关性中的准平台状态:科隆轨道高速公路为例

Quasi-stationary states in temporal correlations for traffic systems: Cologne orbital motorway as an example

论文作者

Wang, Shanshan, Gartzke, Sebastian, Schreckenberg, Michael, Guhr, Thomas

论文摘要

交通系统是具有非平稳特征的复杂系统。因此,临时交通状态的识别非常重要。与时间序列的通常相关性相反,我们在这里研究了位置系列的序列,及时揭示结构,即交通的丰富非马克维亚特征。考虑到整个古龙水轨道高速公路的交通系统,我们通过使用$ k $ -MEANS方法聚类降低流量的等级相关矩阵来确定五个准平台状态。具有非平凡特征的五个准平台状态包括一个假期状态,三个工作日状态以及一个假期和工作日的混合状态。特别是,工作日状态和混合状态表现出强烈的相关时间组,显示为相关矩阵中的对角线块。我们将这五个状态映射到速度的减少级别相关矩阵上,并在空间和时间揭示的自由或拥挤状态的交通状态下。我们的研究为研究交通系统提供了新的观点。这项贡献旨在提供概念证明和进一步研究的基础。

Traffic systems are complex systems that exhibit non-stationary characteristics. Therefore, the identification of temporary traffic states is significant. In contrast to the usual correlations of time series, here we study those of position series, revealing structures in time, i.e. the rich non-Markovian features of traffic. Considering the traffic system of the Cologne orbital motorway as a whole, we identify five quasi-stationary states by clustering reduced rank correlation matrices of flows using the $k$-means method. The five quasi-stationary states with nontrivial features include one holiday state, three workday states and one mixed state of holidays and workdays. In particular, the workday states and the mixed state exhibit strongly correlated time groups shown as diagonal blocks in the correlation matrices. We map the five states onto reduced-rank correlation matrices of velocities and onto traffic states where free or congested states are revealed in both space and time. Our study opens a new perspective for studying traffic systems. This contribution is meant to provide a proof of concept and a basis for further study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源