论文标题
通过碳纳米管纤维的整合启用了耐损伤的层压结构超级电容器复合材料
Damage-tolerant, laminated structural supercapacitor composites enabled by integration of carbon nanotube fibres
论文作者
论文摘要
多功能材料的自然实施例,结合了能量存储能力和结构机械性能是分层结构,类似于层压结构复合材料和电化学能源存储设备。带有集成电双层电容储存的结构复合材料是通过树脂输注的铺设产生的,其中包括用作机械增强的编织玻璃织物,碳纳米管非编织织物作为电极/电流收集器和聚合物电解质。能量存储层用孔形成图案,在整合后形成了树脂插头,用于与铆钉相似的层之间的机械互连。有限元建模用于优化固定剪切特性上的铆钉形状和面积密度。在三点弯曲期间进行的电静态电荷放电测试表明,在3.5 V处的大偏转或重复的负载/卸载循环后,这种机械耐受性是消除金属电流收集器的结果,以及通过电子显微镜和X射线计算的分层观察到的多功能材料的有效整合。相反,具有金属电流收集器的对照样品(类似于嵌入式设备)在反复弯曲时迅速降解。
A natural embodiment for multifunctional materials combining energy-storing capabilities and structural mechanical properties are layered structures, similar to both laminate structural composites and electrochemical energy storage devices. A structural composite with integrated electric double layer capacitive storage is produced by resin infusion of a lay up including woven glass fabric used as mechanical reinforcement, carbon nanotube non-woven fabrics as electrodes/current collectors and a polymer electrolyte. The energy-storing layer is patterned with holes, which after integration form resin plugs for mechanical interconnection between layers, similar to rivets. Finite element modelling is used to optimise rivet shape and areal density on interlaminar shear properties. Galvanostatic charge discharge tests during three point bending show no degradation of properties after large deflections or repeated load/unload cycling at 3.5 V.This mechanical tolerance is a consequence of the elimination of metallic current collectors and the effective integration of multifunctional materials, as observed by electron microscopy and X-ray computed tomography. In contrast, control samples with metallic current collectors, analogous to embedded devices, rapidly degrade upon repeated bending.