论文标题
通过光谱方法的正交和置换组同步的近乎最佳性能边界
Near-Optimal Performance Bounds for Orthogonal and Permutation Group Synchronization via Spectral Methods
论文作者
论文摘要
组同步要求从成对测量值中恢复组元素。它在各个科学学科中发现了许多应用。在这项工作中,我们专注于正交和置换组同步,这些群体同步在计算机视觉中广泛使用,例如运动的对象匹配和结构。在许多可用的方法中,由于其效率和便利性,光谱方法享有很大的知名度。我们将研究光谱方法的性能保证,以通过研究计算的特征向量分别分别近似每个组元素来解决这两个同步问题。我们通过应用最新流行的〜\ emph {tave-One-out}技术来建立我们的理论,并得出A〜 \ emph {block-wine}性能通过特征向量恢复每个组元素的性能。特别是,对于正交组的同步,我们获得了在存在加性高斯噪声的情况下,在组恢复中获得了近乎最佳的性能。对于随机腐败下的排列组同步,我们表明,如果SNR(信噪比)接近信息理论限制,则广泛使用的两步过程(光谱方法加上舍入)可以准确恢复所有组元素。我们的数值实验证实了我们的理论,并指示了确切组回收的急剧过渡。
Group synchronization asks to recover group elements from their pairwise measurements. It has found numerous applications across various scientific disciplines. In this work, we focus on orthogonal and permutation group synchronization which are widely used in computer vision such as object matching and structure from motion. Among many available approaches, the spectral methods have enjoyed great popularity due to their efficiency and convenience. We will study the performance guarantees of the spectral methods in solving these two synchronization problems by investigating how well the computed eigenvectors approximate each group element individually. We establish our theory by applying the recent popular~\emph{leave-one-out} technique and derive a~\emph{block-wise} performance bound for the recovery of each group element via eigenvectors. In particular, for orthogonal group synchronization, we obtain a near-optimal performance bound for the group recovery in presence of additive Gaussian noise. For permutation group synchronization under random corruption, we show that the widely-used two-step procedure (spectral method plus rounding) can recover all the group elements exactly if the SNR (signal-to-noise ratio) is close to the information theoretical limit. Our numerical experiments confirm our theory and indicate a sharp phase transition for the exact group recovery.