论文标题
具有分布漂移和Lévy噪声的多维SDE
Multidimensional SDE with distributional drift and Lévy noise
论文作者
论文摘要
我们通过研究相关的(奇异的)martingale问题并解决kolmogorov向后方程来求解由对称的分布漂移,$α$ - 稳定的莱维流程驱动的分布漂移,并允许在正规$ 3 $(2-2-2α)中,我们可以更好地理解,我们可以很好地理解,我们可以很好地理解''规律性比$(1-α)/2 $。在低规律性方程中,Kolmogorov向后的方程是基于paracontroll的分布。 关键字:奇异扩散,稳定的lévy噪声,分布漂移,副控制分布,BROX扩散
We solve multidimensional SDEs with distributional drift driven by symmetric, $α$-stable Lévy processes for $α\in (1,2]$ by studying the associated (singular) martingale problem and by solving the Kolmogorov backward equation. We allow for drifts of regularity $(2-2α)/3$, and in particular we go beyond the by now well understood "Young regime", where the drift must have better regularity than $(1-α)/2$. The analysis of the Kolmogorov backward equation in the low regularity regime is based on paracontrolled distributions. As an application of our results we construct a Brox diffusion with Lévy noise. Keywords: Singular diffusions, stable Lévy noise, distributional drift, paracontrolled distributions, Brox diffusion