论文标题
语言解释性工具:NLP模型的可扩展,交互式可视化和分析
The Language Interpretability Tool: Extensible, Interactive Visualizations and Analysis for NLP Models
论文作者
论文摘要
我们介绍了语言可解释性工具(LIT),这是一个可视化和理解NLP模型的开源平台。我们关注有关模型行为的核心问题:为什么我的模型做出了这一预测?什么时候表现不佳?在输入的受控更改下会发生什么? LIT将局部解释,汇总分析和反事实生成整合到基于浏览器的简化界面中,以实现快速探索和错误分析。我们包括针对各种工作流程的案例研究,包括探索对情感分析的反事实,衡量核心系统中的性别偏见以及探索文本生成中的本地行为。 LIT支持广泛的模型,包括分类,SEQ2SEQ和结构化预测,并且通过声明性的,框架 - 不合Snostic的API高度扩展。 LIT正在积极开发中,并在https://github.com/pair-code/lit上提供代码和完整文档。
We present the Language Interpretability Tool (LIT), an open-source platform for visualization and understanding of NLP models. We focus on core questions about model behavior: Why did my model make this prediction? When does it perform poorly? What happens under a controlled change in the input? LIT integrates local explanations, aggregate analysis, and counterfactual generation into a streamlined, browser-based interface to enable rapid exploration and error analysis. We include case studies for a diverse set of workflows, including exploring counterfactuals for sentiment analysis, measuring gender bias in coreference systems, and exploring local behavior in text generation. LIT supports a wide range of models--including classification, seq2seq, and structured prediction--and is highly extensible through a declarative, framework-agnostic API. LIT is under active development, with code and full documentation available at https://github.com/pair-code/lit.