论文标题

基于信任的云机学习模型选择用于工业物联网和智能城市服务

Trust-Based Cloud Machine Learning Model Selection For Industrial IoT and Smart City Services

论文作者

Qolomany, Basheer, Mohammed, Ihab, Al-Fuqaha, Ala, Guizan, Mohsen, Qadir, Junaid

论文摘要

借助机器学习(ML)服务,现在在许多关键任务的人为领域中使用的服务,确保ML模型的完整性和可信度变得至关重要。在这项工作中,我们考虑了范式服务提供商从资源约束设备中收集大数据,以构建基于ML的预测模型,然后将其发送回去,以在间歇性连接的资源约束设备上本地运行。我们提出的解决方案包括一个智能多项式启发式启发式,该解决方案通过从模型的超级集体中选择和切换ML模型的子集,从而最大程度地提高ML模型的信任水平,以最大程度地提高信任度,同时尊重给定的重新配置预算/费率并减少云通信的云通信范围。我们使用两个案例研究评估了我们提出的启发式措施的性能。首先,我们考虑工业物联网(IIOT)服务,作为此设置的代理,我们使用Turbofan Engine降低模拟数据集来预测发动机的剩余使用寿命。我们在此设置中的结果表明,与使用整数线性编程(ILP)获得的结果相比,所选模型的信任水平降低了0.49%至3.17%。其次,我们考虑智能城市服务,作为这种设置的代理,我们使用实验运输数据集来预测汽车数量。我们的结果表明,与使用ILP获得的结果相比,所选模型的信任水平为0.7%至2.53%。我们还表明,我们所提出的启发式可以在该问题的多项式时间近似方案中实现最佳竞争比率。

With Machine Learning (ML) services now used in a number of mission-critical human-facing domains, ensuring the integrity and trustworthiness of ML models becomes all-important. In this work, we consider the paradigm where cloud service providers collect big data from resource-constrained devices for building ML-based prediction models that are then sent back to be run locally on the intermittently-connected resource-constrained devices. Our proposed solution comprises an intelligent polynomial-time heuristic that maximizes the level of trust of ML models by selecting and switching between a subset of the ML models from a superset of models in order to maximize the trustworthiness while respecting the given reconfiguration budget/rate and reducing the cloud communication overhead. We evaluate the performance of our proposed heuristic using two case studies. First, we consider Industrial IoT (IIoT) services, and as a proxy for this setting, we use the turbofan engine degradation simulation dataset to predict the remaining useful life of an engine. Our results in this setting show that the trust level of the selected models is 0.49% to 3.17% less compared to the results obtained using Integer Linear Programming (ILP). Second, we consider Smart Cities services, and as a proxy of this setting, we use an experimental transportation dataset to predict the number of cars. Our results show that the selected model's trust level is 0.7% to 2.53% less compared to the results obtained using ILP. We also show that our proposed heuristic achieves an optimal competitive ratio in a polynomial-time approximation scheme for the problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源