论文标题

Sensei:将视频流质量与动态用户敏感性保持一致

SENSEI: Aligning Video Streaming Quality with Dynamic User Sensitivity

论文作者

Zhang, Xu, Ou, Yiyang, Sen, Siddhartha, Jiang, Junchen

论文摘要

本文旨在通过利用一个简单的观察来改善视频流:用户在视频的某些部位比其他部分更敏感。例如,在体育视频的关键时刻重新拒绝(例如,在进球之前)比在正常游戏中重新扣除更令人讨厌。但是,这种动态质量敏感性很少被当前的方法捕获,这些方法可以使用一种尺寸合适的启发式方法来预测QoE(体验质量),这些启发式方法太简单了,无法理解视频内容的细微差别。我们没有提出另一种启发式方法,而是采用另一种方法:我们为每个视频进行了一个单独的众包实验,以在视频的不同部分中得出用户的质量敏感性。当然,大规模进行此操作的成本可能是令人难以置信的,但是我们表明,与内容提供商在内容生成和分发中投资多少相比,仔细的实验​​设计与一套修剪技术相比,成本可以忽略不计。我们准确介绍时间变化的用户敏感性的能力激发了一种新方法:动态对齐较高(较低)的质量具有较高(较低)的灵敏度期。我们提出了一个名为Sensei的新视频流系统,该系统将动态质量灵敏度纳入现有质量适应算法中。我们将Sensei应用于两种最先进的适应算法。 Sensei可以采取看似不寻常的行动:例如,即使带宽足够,在不久的将来质量敏感性变得更高时,降低比特率(或启动重新装饰事件)即使可以保持更高的比特率。与最先进的方法相比,Sensei将QoE提高15.1%或达到相同的QOE,平均带宽少26.8%。

This paper aims to improve video streaming by leveraging a simple observation: users are more sensitive to low quality in certain parts of a video than in others. For instance, rebuffering during key moments of a sports video (e.g., before a goal is scored) is more annoying than rebuffering during normal gameplay. Such dynamic quality sensitivity, however, is rarely captured by current approaches, which predict QoE (quality-of-experience) using one-size-fits-all heuristics that are too simplistic to understand the nuances of video content. Instead of proposing yet another heuristic, we take a different approach: we run a separate crowdsourcing experiment for each video to derive users' quality sensitivity at different parts of the video. Of course, the cost of doing this at scale can be prohibitive, but we show that careful experiment design combined with a suite of pruning techniques can make the cost negligible compared to how much content providers invest in content generation and distribution. Our ability to accurately profile time-varying user sensitivity inspires a new approach: dynamically aligning higher (lower) quality with higher (lower) sensitivity periods. We present a new video streaming system called SENSEI that incorporates dynamic quality sensitivity into existing quality adaptation algorithms. We apply SENSEI to two state-of-the-art adaptation algorithms. SENSEI can take seemingly unusual actions: e.g., lowering bitrate (or initiating a rebuffering event) even when bandwidth is sufficient so that it can maintain a higher bitrate without rebuffering when quality sensitivity becomes higher in the near future. Compared to state-of-the-art approaches, SENSEI improves QoE by 15.1% or achieves the same QoE with 26.8% less bandwidth on average.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源