论文标题

ISING模型优化问题在FPGA加速受限的玻尔兹曼机器上

Ising Model Optimization Problems on a FPGA Accelerated Restricted Boltzmann Machine

论文作者

Patel, Saavan, Chen, Lili, Canoza, Philip, Salahuddin, Sayeef

论文摘要

优化问题,尤其是NP-HARD组合优化问题,是一些最困难的计算问题,没有已知的多项式时间算法。最近,人们有兴趣使用专用硬件来加速解决这些问题的解决方案,而物理退火器和量子绝热计算机是最新的某种状态。在这项工作中,我们证明了限制性玻尔兹曼机器(RBM)作为一个随机神经网络,能够有效地解决这些问题。我们表明,通过将RBM映射到可重构字段可编程门阵列(FPGA)上,我们可以有效地硬件加速RBM的随机采样算法。我们在两个这样的优化问题上对DWAVE 2000Q量子绝热计算机和光学连贯的ISING机器进行基准测试:最大切割问题并找到Sherrington-Kirkpatrick(SK)自旋玻璃的基态。关于这些问题,与其他加速器相比,硬件加速的RBM在课堂性能中表现最好,并且与类似的经验经验$ \ \ \ \ \ \ \ \ \ \ \ \^o}(e^ofrivement compry commive compy compry compy in Compy complance com(e Impriv)相比,$ \ mathcal {o}(e^{ - n} $)的经验缩放性能的可能性为基础状态。 CIM)和经验$ \ MATHCAL {O}(e^{ - n^2})$用于DWAVE NEALEALER。与DWAVE 2000Q相比,与最大切割和SK问题的DWAVE 2000Q相比,结果可提高$ 10^7 $ x和$ 10^5 $ X的解决方案的时间,以及与这些问题的连贯的Ising Machine发电机相比,$ 150 $ x和$ 1000 $ X的性能提高。通过使用在室温下运行的商品硬件进行加速,RBM也具有更大的立即和可扩展使用的潜力。

Optimization problems, particularly NP-Hard Combinatorial Optimization problems, are some of the hardest computing problems with no known polynomial time algorithm existing. Recently there has been interest in using dedicated hardware to accelerate the solution to these problems, with physical annealers and quantum adiabatic computers being some of the state of the art. In this work we demonstrate usage of the Restricted Boltzmann Machine (RBM) as a stochastic neural network capable of solving these problems efficiently. We show that by mapping the RBM onto a reconfigurable Field Programmable Gate Array (FPGA), we can effectively hardware accelerate the RBM's stochastic sampling algorithm. We benchmark the RBM against the DWave 2000Q Quantum Adiabatic Computer and the Optical Coherent Ising Machine on two such optimization problems: the MAX-CUT problem and finding the ground state of a Sherrington-Kirkpatrick (SK) spin glass. On these problems, the hardware accelerated RBM shows best in class performance compared to these other accelerators, with an empirical scaling performance of $\mathcal{O}(e^{-N})$ for probability of reaching the ground state compared to a similar empirical $\mathcal{O}(e^{-N})$ for the CIM (with the RBM showing a constant factor of improvement over the CIM) and empirical $\mathcal{O}(e^{-N^2})$ for the DWave Annealer. The results show up to $10^7$x and $10^5$x time to solution improvement compared to the DWave 2000Q on the MAX-CUT and SK problems respectively, along with a $150$x and $1000$x performance increase compared to the Coherent Ising Machine annealer on those problems. By using commodity hardware running at room temperature for acceleration, the RBM also has greater potential for immediate and scalable use.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源