论文标题

泰坦大气中的HCN产生:耦合量子化学和不平衡大气建模

HCN production in Titan's Atmosphere: Coupling quantum chemistry and disequilibrium atmospheric modeling

论文作者

Pearce, Ben K. D., Molaverdikhani, Karan, Pudritz, Ralph E., Henning, Thomas, Hébrard, Eric

论文摘要

氰化氢(HCN)是氮的关键反应源,用于构建与生命起源相关的关键生物分子。尽管如此,许多HCN反应仍未通过实验和理论表现出来,并且尚不完全了解行星气氛中HCN产生的完整情况。为了改善这种情况,我们开发了一种新型技术,利用计算量子化学,实验数据和大气数值模拟。首先,我们使用量子化学模拟来探索N2-,CH4-和H2主导气氛中主要物种列表的可能反应的整个领域。在此过程中,我们发现了33种没有先前已知速率系数的新反应。从这里开始,我们开发了一个一致的大气杂交化学网络(CRAHCN),该网络(CRAHCN)在可用时包含实验值,否则我们计算出的速率系数。接下来,我们将CRAHCN与一维化学动力学模型(ChemKM)相结合,以计算HCN丰度,这是泰坦大气深度的函数。我们模拟的大气HCN轮廓与Cassini观察结果非常吻合。 CRAHCN包含104个反应,但是几乎所有模拟的大气HCN曲线都可以使用只有19个主要反应的缩放网络获得。从这里开始,我们形成了泰坦大气中HCN化学的完整图片,从主要大气物种的解离,一直到沿4个主要渠道直接生产HCN。这些通道之一首先在Pearce等人中发现并进行了表征。 (2019年)和这项工作。

Hydrogen cyanide (HCN) is a critical reactive source of nitrogen for building key biomolecules relevant for the origin of life. Still, many HCN reactions remain uncharacterized by experiments and theory, and the complete picture of HCN production in planetary atmospheres is not fully understood. To improve this situation, we develop a novel technique making use of computational quantum chemistry, experimental data, and atmospheric numerical simulations. First, we use quantum chemistry simulations to explore the entire field of possible reactions for a list of primary species in N2-, CH4-, and H2-dominated atmospheres. In this process, we discover 33 new reactions with no previously known rate coefficients. From here, we develop a consistent reduced atmospheric hybrid chemical network (CRAHCN) containing experimental values when available, and our calculated rate coefficients otherwise. Next, we couple CRAHCN to a 1D chemical kinetic model (ChemKM) to compute the HCN abundance as a function of atmospheric depth on Titan. Our simulated atmospheric HCN profile agrees very well with the Cassini observations. CRAHCN contains 104 reactions however nearly all of the simulated atmospheric HCN profile can be obtained using a scaled down network of only 19 dominant reactions. From here, we form a complete picture of HCN chemistry in Titan's atmosphere, from the dissociation of the main atmospheric species, down to the direct production of HCN along 4 major channels. One of these channels was first discovered and characterized in Pearce et al. (2019) and this work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源