论文标题
类似帕拉萨基的里曼尼亚人歧管和新的爱因斯坦指标
Para-Sasaki-like Riemannian manifolds and new Einstein metrics
论文作者
论文摘要
我们提取了一类新的副神经paracomplex riemannian歧管,这些歧管是由某些锥形构造引起的,称其为para-sasaki like riemannian歧管,并给出明确的例子。我们定义了副型寄生虫复合物riemannian歧管的双曲线延伸,该歧管是两个带有相等尺寸的Riemannian空间的局部产物,表明它是一种类似于sasaki的riemannian歧管。如果起始副型副型副型riemannian歧管是完整的爱因斯坦,其叠液曲率为负,那么其双曲线延伸是一个完整的Einstein Para-sasaki类似的Riemannian歧管,带有负标量曲率,从而产生完整的Einstein Rieemannian Riiemann riiemann cormar corlod calcar curvature colvature的新例子。
We extract a new class of paracontact paracomplex Riemannian manifolds arising from certain cone construction, call it para-Sasaki-like Riemannian manifold and give explicit examples. We define a hyperbolic extension of a paraholomorphic paracomplex Riemannian manifold, which is a local product of two Riemannian spaces with equal dimensions, showing that it is a para-Sasaki-like Riemannian manifold. If the starting paraholomorphic paracomplex Riemannian manifold is complete Einstein with negative scalar curvature then its hyperbolic extension is a complete Einstein para-Sasaki-like Riemannian manifold with negative scalar curvature thus producing new examples of complete Einstein Riemannian manifold with negative scalar curvature.