论文标题
轨迹预测的多模式深生成模型:条件变异自动编码器方法
Multimodal Deep Generative Models for Trajectory Prediction: A Conditional Variational Autoencoder Approach
论文作者
论文摘要
人类行为预测模型使机器人能够预测人类对其行为的反应,因此有助于制定安全和主动的机器人计划算法。但是,对复杂的交互动力学进行建模并捕获这种交互式设置中许多可能结果的可能性非常具有挑战性,这最近促使研究了几种不同的方法。在这项工作中,我们为人类行为预测的有条件变异自动编码器(CVAE)方法提供了一个独立的教程,该方法以其核心,可以在未来的人类轨迹上产生多模式概率分布,这些轨迹是基于过去的互动和候选机器人未来的行动。具体而言,本教程论文的目标是审查和建立人类行为预测中最先进方法的分类法,从基于物理学到纯粹的数据驱动方法,为数据驱动的,基于CVAE的方法提供了严格而易于访问的描述,这些方法是对基于模型的类型进行互动的诱人模型的重要设计,并重点介绍了该模型的重要模型,并提供了模型互动的互动,并具有重要的设计。
Human behavior prediction models enable robots to anticipate how humans may react to their actions, and hence are instrumental to devising safe and proactive robot planning algorithms. However, modeling complex interaction dynamics and capturing the possibility of many possible outcomes in such interactive settings is very challenging, which has recently prompted the study of several different approaches. In this work, we provide a self-contained tutorial on a conditional variational autoencoder (CVAE) approach to human behavior prediction which, at its core, can produce a multimodal probability distribution over future human trajectories conditioned on past interactions and candidate robot future actions. Specifically, the goals of this tutorial paper are to review and build a taxonomy of state-of-the-art methods in human behavior prediction, from physics-based to purely data-driven methods, provide a rigorous yet easily accessible description of a data-driven, CVAE-based approach, highlight important design characteristics that make this an attractive model to use in the context of model-based planning for human-robot interactions, and provide important design considerations when using this class of models.