论文标题
银河图像模拟的深层生成模型
Deep Generative Models for Galaxy Image Simulations
论文作者
论文摘要
图像模拟是准备和验证当前和未来宽视野光学调查的分析的必要工具。但是,用作这些模拟的基础的星系模型通常仅限于简单的参数光谱,或使用相当有限的可用空间数据。在这项工作中,我们提出了一种基于深层生成模型的方法,以创建复杂的星系形态模型,以满足即将进行的调查的图像模拟需求。我们通过为观察到的图像构建混合深度学习/物理贝叶斯分层模型来解决与从嘈杂和PSF相互浏览图像中学习这种形态模型相关的技术挑战,并明确考虑了点传播功能和噪声属性。生成模型进一步以物理星系参数为条件,以允许从特定的星系种群中抽样新的光谱。我们证明了我们从HST/ACS Cosmos调查的Galaxy邮票中训练和采样的能力,并使用一系列二级和高级形态统计量来验证模型的质量。使用这组统计数据,我们使用这些深层生成模型与常规参数模型相比,证明了更现实的形态。为了帮助社区制造这些生成模型实用的工具,我们引入了Galsim-Hub,一个由社区驱动的生成模型存储库,以及将生成模型纳入Galsim Image Simulation软件中的框架。
Image simulations are essential tools for preparing and validating the analysis of current and future wide-field optical surveys. However, the galaxy models used as the basis for these simulations are typically limited to simple parametric light profiles, or use a fairly limited amount of available space-based data. In this work, we propose a methodology based on Deep Generative Models to create complex models of galaxy morphologies that may meet the image simulation needs of upcoming surveys. We address the technical challenges associated with learning this morphology model from noisy and PSF-convolved images by building a hybrid Deep Learning/physical Bayesian hierarchical model for observed images, explicitly accounting for the Point Spread Function and noise properties. The generative model is further made conditional on physical galaxy parameters, to allow for sampling new light profiles from specific galaxy populations. We demonstrate our ability to train and sample from such a model on galaxy postage stamps from the HST/ACS COSMOS survey, and validate the quality of the model using a range of second- and higher-order morphology statistics. Using this set of statistics, we demonstrate significantly more realistic morphologies using these deep generative models compared to conventional parametric models. To help make these generative models practical tools for the community, we introduce GalSim-Hub, a community-driven repository of generative models, and a framework for incorporating generative models within the GalSim image simulation software.