论文标题
多层($ \ MATHCAL {N} \ GE 2 $)LIEB LATTICES中的Chern数字较高:拓扑过渡和二次频段越界线
Higher Chern numbers in multilayer ($\mathcal{N} \ge 2$) Lieb lattices: Topological transitions and quadratic band crossing lines
论文作者
论文摘要
我们考虑迄今未开发的堆叠多层设置($ \ MATHCAL {N} $)LIEB LATTICE,在存在内部旋转摩托车耦合(SOC)的情况下,它在存在的情况下进行了异常的拓扑过渡。特定的堆叠构型会诱导有效的非肌化2D晶格结构,即使组成部分单层Lieb晶格的特征是同形空间群。这种新出现的非晶状体性导致多个双层带延伸到布里鲁因区域边缘(即二次带交叉线)。在存在层内SOC的情况下,这些双重脱位频段通常形成三个$ \ MATHCAL {n} $ - 频段子空间,由两个带隙相互隔开。我们使用专门设计的Wilson Loop操作员来计算非亚伯浆果阶段,分析这些多波段子空间的拓扑特性,以表明它们携带更高的Chern Number $ \ Mathcal {n} $。
We consider a hitherto unexplored setting of stacked multilayer ($\mathcal{N}$) Lieb lattice which undergoes an unusual topological transition in the presence of intra-layer spin-orbit coupling (SOC). The specific stacking configuration induces an effective non-symmorphic 2D lattice structure, even though the constituent monolayer Lieb lattice is characterized by a symmorphic space group. This emergent non-symmorphicity leads to multiple doubly-degenerate bands extending over the edge of the Brillouin zone (i.e. Quadratic Band Crossing Lines). In the presence of intra-layer SOC, these doubly-degenerate bands typically form three $\mathcal{N}$-band subspaces, mutually separated by two band gaps. We analyze the topological properties of these multi-band subspaces, using specially devised Wilson loop operators to compute non-abelian Berry phases, in order to show that they carry a higher Chern number $\mathcal{N}$.