论文标题

多个对象跟踪的无外观三方匹配

Appearance-free Tripartite Matching for Multiple Object Tracking

论文作者

Wang, Lijun, Zhu, Yanting, Shi, Jue, Fan, Xiaodan

论文摘要

多个对象跟踪(MOT)检测给定输入视频的多个对象的轨迹。对于各种研究和行业领域,例如用于视频监视中的生物医学研究和人类跟踪的细胞跟踪,它变得越来越重要。大多数现有的算法取决于对象外观的独特性,而主导的两分匹配方案忽略了速度平滑度。尽管几种方法已融合了跟踪的速度平滑度,但它们要么无法追求全局平滑速度,要么经常被困在局部最佳中。无论外观如何,我们都专注于一般的MOT问题,并提出了无外观的三方匹配,以避免两分匹配的不规则速度问题。三方匹配的表述为最大化状态向量的可能性是由对象的位置和速度构成的,从而导致链依赖性结构。我们求助于动态编程算法,以找到这样的最大似然估计。为了克服在跟踪许多对象时,由动态编程的巨大搜索空间引起的高计算成本,我们通过消失的对象数量分解空间,并通过截断分解来提出一个缩小空间方法。广泛的模拟显示了我们提出的方法的优势和效率,与细胞跟踪挑战的最高方法的比较也证明了我们的能力。我们还应用了我们的方法在癌症研究中跟踪肿瘤细胞周围天然杀伤细胞的运动。

Multiple Object Tracking (MOT) detects the trajectories of multiple objects given an input video. It has become more and more important for various research and industry areas, such as cell tracking for biomedical research and human tracking in video surveillance. Most existing algorithms depend on the uniqueness of the object's appearance, and the dominating bipartite matching scheme ignores the speed smoothness. Although several methods have incorporated the velocity smoothness for tracking, they either fail to pursue global smooth velocity or are often trapped in local optimums. We focus on the general MOT problem regardless of the appearance and propose an appearance-free tripartite matching to avoid the irregular velocity problem of the bipartite matching. The tripartite matching is formulated as maximizing the likelihood of the state vectors constituted of the position and velocity of objects, which results in a chain-dependent structure. We resort to the dynamic programming algorithm to find such a maximum likelihood estimate. To overcome the high computational cost induced by the vast search space of dynamic programming when many objects are to be tracked, we decompose the space by the number of disappearing objects and propose a reduced-space approach by truncating the decomposition. Extensive simulations have shown the superiority and efficiency of our proposed method, and the comparisons with top methods on Cell Tracking Challenge also demonstrate our competence. We also applied our method to track the motion of natural killer cells around tumor cells in a cancer study.\footnote{The source code is available on \url{https://github.com/szcf-weiya/TriMatchMOT}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源