论文标题

通过历史数据学习的空间众包的差异私人框架

A Differentially Private Framework for Spatial Crowdsourcing with Historical Data Learning

论文作者

Zhang, Shun, Duan, Benfei, Chen, Zhili, Zhong, Hong, Yu, Qizhi

论文摘要

在移动互联网和共享经济时代,空间众包(SC)是日益流行的众包类别。它要求工人到达特定位置以进行任务履行。有效保护位置隐私对于工人的热情和有效的任务分配至关重要。但是,具有差异隐私的现有SC模型通常会在分区和数据出版物中诱使实时位置数据。这种方式可能会产生大量的扰动,以计算影响分配成功率和分配准确性的查询。本文提出了一个框架(R-HT),以利用实时和历史数据来保护工人的位置隐私。我们通过抽样从历史数据中学到的概率分布,将其用于网格分区,然后在此分区下以不同的隐私发布来模拟位置。这意识到,大多数隐私预算都分配给每个单元的工人数量,并产生改进的私人空间分解方法。此外,我们介绍了一些地理播种区域构建策略,包括质量评分功能和局部最大地理半径。对现实世界数据集的一系列实验结果表明,R-HT达到了稳定的任务分配成功率,可以在众包平台上节省绩效开销并适合动态分配。

Spatial crowdsourcing (SC) is an increasing popular category of crowdsourcing in the era of mobile Internet and sharing economy. It requires workers to arrive at a particular location for task fulfillment. Effective protection of location privacy is essential for workers' enthusiasm and valid task assignment. However, existing SC models with differential privacy usually perturb real-time location data for both partition and data publication. Such a way may produce large perturbations to counting queries that affect assignment success rate and allocation accuracy. This paper proposes a framework (R-HT) for protecting location privacy of workers taking advantage of both real-time and historical data. We simulate locations by sampling the probability distribution learned from historical data, use them for grid partition, and then publish real-time data under this partitioning with differential privacy. This realizes that most privacy budget is allocated to the worker count of each cell and yields an improved Private Spatial Decomposition approach. Moreover, we introduce some strategies for geocast region construction, including quality scoring function and local maximum geocast radius. A series of experimental results on real-world datasets shows that R-HT attains a stable success rate of task assignment, saves performance overhead and fits for dynamic assignment on crowdsourcing platforms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源