论文标题

中子恒星物质的参数化状态方程,并连续音速

A Parametrized Equation of State for Neutron Star Matter with Continuous Sound Speed

论文作者

O'Boyle, Michael F., Markakis, Charalampos, Stergioulas, Nikolaos, Read, Jocelyn S.

论文摘要

我们使用ANSATZ提出了状态中子Store的广义分段多潮经参数化,该ANSATZ不仅在压力和能量密度上施加连续性,而且在声音速度下也施加了连续性。状态的候选方程宇宙被证明可以接受首选的分裂密度,这是通过最大程度地减少由整体天体物理可观察物组成的误差规范来确定的。通用的分段多型准确地重现天体物理可观察的物体,例如质量,半径,潮汐变形性和模式频率,以及热力学量,例如绝热指数。这使得新的EOS对重力波形的贝叶斯参数估计有用。此外,由于它们是可区分的,因此广义分段多层可以改善中子恒星数值相对性模拟中的点收敛。现有的分段多层实现可以轻松适应此概括。

We present a generalized piecewise polytropic parameterization for the neutron-star equation of state using an ansatz that imposes continuity in not only pressure and energy density, but also in the speed of sound. The universe of candidate equations of state is shown to admit preferred dividing densities, determined by minimizing an error norm consisting of integral astrophysical observables. Generalized piecewise polytropes accurately reproduce astrophysical observables, such as mass, radius, tidal deformability and mode frequencies, as well as thermodynamic quantities, such as the adiabatic index. This makes the new EOS useful for Bayesian parameter estimation from gravitational waveforms. Moreover, since they are differentiable, generalized piecewise polytropes can improve pointwise convergence in numerical relativity simulations of neutron stars. Existing implementations of piecewise polytropes can easily accommodate this generalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源