论文标题

关于量子Hochschild同源性的评论

A remark on quantum Hochschild homology

论文作者

Lipshitz, Robert

论文摘要

Beliakova-putyra-wehrli与Annular Khovanov同源性研究了各种痕迹。特别是,在其上方的分级代数和分级的双模块上,他们将代数的量子hochschild同源性与双模块中的系数相关联,并使用它来获得链接的环形khovanov同源性的变形。 Akhmechet-Krushkal-Willis最近给出了由此产生的不变的光谱细化。 在此简短的说明中,我们观察到量子Hochschild同源性是两个熟悉操作的组成,并简短证明了它在某种程度上给出了环形链接的不变性。这在贝利亚科娃·普特拉·沃利(Beliakova-Putyra-Wehrli)的作品中隐含了很多。

Beliakova-Putyra-Wehrli studied various kinds of traces, in relation to annular Khovanov homology. In particular, to a graded algebra and a graded bimodule over it, they associate a quantum Hochschild homology of the algebra with coefficients in the bimodule, and use this to obtain a deformation of the annular Khovanov homology of a link. A spectral refinement of the resulting invariant was recently given by Akhmechet-Krushkal-Willis. In this short note we observe that quantum Hochschild homology is a composition of two familiar operations, and give a short proof that it gives an invariant of annular links, in some generality. Much of this is implicit in Beliakova-Putyra-Wehrli's work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源