论文标题
基于机器学习的事件生成器,用于电子普罗顿散射
Machine learning-based event generator for electron-proton scattering
论文作者
论文摘要
我们提出了一个新的基于机器学习的蒙特卡洛事件生成器,使用生成对抗网络(GAN)可以通过校准的检测器仿真来训练,以构建一个顶点级事件生成器,没有关于符号计尺度物理的理论假设。我们的框架包括一个基于GAN的检测器折叠,作为模拟检测器模拟器的快速流媒体模型。该框架在模拟的包含深度无弹性散射数据以及检测器仿真的现有参数上进行了测试和验证,并基于统计引导技术进行不确定性量化。我们的结果首次提供了一种现实的概念概念,以减轻理论偏见,以推断重建物理可观察物所需的顶点级别事件分布。
We present a new machine learning-based Monte Carlo event generator using generative adversarial networks (GANs) that can be trained with calibrated detector simulations to construct a vertex-level event generator free of theoretical assumptions about femtometer scale physics. Our framework includes a GAN-based detector folding as a fast-surrogate model that mimics detector simulators. The framework is tested and validated on simulated inclusive deep-inelastic scattering data along with existing parametrizations for detector simulation, with uncertainty quantification based on a statistical bootstrapping technique. Our results provide for the first time a realistic proof-of-concept to mitigate theory bias in inferring vertex-level event distributions needed to reconstruct physical observables.