论文标题
RGB-D显着对象检测的级联图神经网络
Cascade Graph Neural Networks for RGB-D Salient Object Detection
论文作者
论文摘要
在本文中,我们使用颜色和深度信息研究了RGB-D图像的显着对象检测(SOD)的问题。从RGB-D图像执行显着对象检测的主要技术挑战是如何充分利用两个互补数据源。当前的作品要么简单地从相应的深度图中提取先验知识来处理RGB图像,要么盲目融合颜色和几何信息,以生成粗糙的深度意识表示表示,从而阻碍了RGB-D显着性检测器的性能。在这项工作中,我们通过互助的框架(CAS-gnn)进行了分配,这些框架有能力,这些框架有能力,这些框架有能力的综合范围,这些框架是综合的。级联图,以了解RGB-D显着对象检测的强大表示形式。 CAS-GNN分别处理两个数据源,并采用NovelCascade图形推理(CGR)模块来学习强大的密集特征嵌入,从中可以轻松地从中推断出显着性图。与以前的方法形成鲜明对比的是,互补数据源之间高级关系的明确建模和推理使我们能够更好地克服诸如遮挡和歧义之类的挑战。广泛的实验表明,CAS-GNN的性能明显优于几种广泛使用的基准测试的所有现有RGB-DSOD方法。
In this paper, we study the problem of salient object detection (SOD) for RGB-D images using both color and depth information.A major technical challenge in performing salient object detection fromRGB-D images is how to fully leverage the two complementary data sources. Current works either simply distill prior knowledge from the corresponding depth map for handling the RGB-image or blindly fuse color and geometric information to generate the coarse depth-aware representations, hindering the performance of RGB-D saliency detectors.In this work, we introduceCascade Graph Neural Networks(Cas-Gnn),a unified framework which is capable of comprehensively distilling and reasoning the mutual benefits between these two data sources through a set of cascade graphs, to learn powerful representations for RGB-D salient object detection. Cas-Gnn processes the two data sources individually and employs a novelCascade Graph Reasoning(CGR) module to learn powerful dense feature embeddings, from which the saliency map can be easily inferred. Contrast to the previous approaches, the explicitly modeling and reasoning of high-level relations between complementary data sources allows us to better overcome challenges such as occlusions and ambiguities. Extensive experiments demonstrate that Cas-Gnn achieves significantly better performance than all existing RGB-DSOD approaches on several widely-used benchmarks.