论文标题
航天器碰撞避免挑战:机器学习竞赛的设计和结果
Spacecraft Collision Avoidance Challenge: design and results of a machine learning competition
论文作者
论文摘要
航天器碰撞避免程序已成为卫星操作的重要组成部分。复杂且不断更新的估计值对轨道对象之间的碰撞风险通知各种操作员,这些操作员可以计划降低风险措施。可以通过开发合适的机器学习模型来帮助预测碰撞风险的演变。为了研究这一机会,欧洲航天局于2019年10月发布了一个大型策划数据集,其中包含有关近距离事件的信息,以联想数据消息(CDMS)的形式收集到2015年至2019年。该数据集在航天器碰撞避免挑战中使用,在机器学习竞争中,参与者必须建立最终的碰撞对象之间的机器学习竞赛,以预测最终的碰撞对象,以预测碰撞对象之间的造成或乘坐的对象。本文描述了竞争的设计和结果,并讨论了将机器学习方法应用于此问题领域时所学到的挑战和经验教训。
Spacecraft collision avoidance procedures have become an essential part of satellite operations. Complex and constantly updated estimates of the collision risk between orbiting objects inform the various operators who can then plan risk mitigation measures. Such measures could be aided by the development of suitable machine learning models predicting, for example, the evolution of the collision risk in time. In an attempt to study this opportunity, the European Space Agency released, in October 2019, a large curated dataset containing information about close approach events, in the form of Conjunction Data Messages (CDMs), collected from 2015 to 2019. This dataset was used in the Spacecraft Collision Avoidance Challenge, a machine learning competition where participants had to build models to predict the final collision risk between orbiting objects. This paper describes the design and results of the competition and discusses the challenges and lessons learned when applying machine learning methods to this problem domain.