论文标题

评估神经体系结构的有效性能估计器

Evaluating Efficient Performance Estimators of Neural Architectures

论文作者

Ning, Xuefei, Tang, Changcheng, Li, Wenshuo, Zhou, Zixuan, Liang, Shuang, Yang, Huazhong, Wang, Yu

论文摘要

对神经体系结构进行有效的性能估计是神经体系结构搜索(NAS)的主要挑战。为了降低NAS的体系结构培训成本,一击估计器(OS)通过在所有架构之间共享一个“超网”的参数来摊销架构培训成本。最近,未提出任何涉及培训的零射击估计器(ZSE),以进一步降低体系结构评估成本。尽管这些估计器的效率很高,但此类估计的质量尚未得到彻底研究。在本文中,我们对五个NAS基准的OS和ZSE进行了广泛而有组织的评估:NAS-Bench-101/201/301和NDS Resnet/Resnext-A。具体而言,我们采用一组面向NAS的标准来研究OS和ZSE的行为,并揭示它们具有某些偏见和差异。在分析了如何以及为何不满意的过程中,我们探索了如何从几个角度来减轻OSES的相关差距。通过我们的分析,我们为未来的应用和有效体系结构绩效估算器的开发提供了建议。此外,在未来的研究中可以利用我们工作中提出的分析框架,以使对新设计的建筑性能估计器有更全面的了解。所有代码均可在https://github.com/walkerning/aw_nas上找到。

Conducting efficient performance estimations of neural architectures is a major challenge in neural architecture search (NAS). To reduce the architecture training costs in NAS, one-shot estimators (OSEs) amortize the architecture training costs by sharing the parameters of one "supernet" between all architectures. Recently, zero-shot estimators (ZSEs) that involve no training are proposed to further reduce the architecture evaluation cost. Despite the high efficiency of these estimators, the quality of such estimations has not been thoroughly studied. In this paper, we conduct an extensive and organized assessment of OSEs and ZSEs on five NAS benchmarks: NAS-Bench-101/201/301, and NDS ResNet/ResNeXt-A. Specifically, we employ a set of NAS-oriented criteria to study the behavior of OSEs and ZSEs and reveal that they have certain biases and variances. After analyzing how and why the OSE estimations are unsatisfying, we explore how to mitigate the correlation gap of OSEs from several perspectives. Through our analysis, we give out suggestions for future application and development of efficient architecture performance estimators. Furthermore, the analysis framework proposed in our work could be utilized in future research to give a more comprehensive understanding of newly designed architecture performance estimators. All codes are available at https://github.com/walkerning/aw_nas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源