论文标题

网状采样和加权,用于与局部还原碱基的非线性彼得 - 盖尔金还原模型的高度还原

Mesh sampling and weighting for the hyperreduction of nonlinear Petrov-Galerkin reduced-order models with local reduced-order bases

论文作者

Grimberg, Sebastian, Farhat, Charbel, Tezaur, Radek, Bou-Mosleh, Charbel

论文摘要

能源支持采样和加权方法(ECSW)方法是一种高还原方法,该方法最初开发,用于加速与大规模有限元模型相关的基于Galerkin投射的基于Galerkin投射的减少阶模型(PROM),当时基础投影的操作员需要经常以参数和/或非线性问题为中心地重新组件。在本文中,这种超级还原方法扩展到彼得罗夫 - 盖尔金舞会,其中潜在的高维模型可以与任意有限元,有限的体积和有限差分半差异方法相关联。它的范围还扩展到基于分段式近似子空间的本地舞会,例如旨在缓解与对流为主流量问题相关的Kolmogorov $ n $ width屏障问题。在本文中显示了所得的ECSW方法具有鲁棒性和准确性。特别是,它的离线阶段被证明是快速且可行的,并且其在线阶段对于大规模应用工业相关性应用的潜力被证明是$ O(10^7)$(10^7)$和$ O(10^8)$(10^8)$自由度的湍流问题。对于此类问题,本文在本文中提出的有关Petrov-Galerkin Proms的ECSW方法的在线部分显示出可实现墙壁锁定时间和CPU的时间加速因子,这些速度是多个数量级的,同时提供出色的准确性。

The energy-conserving sampling and weighting (ECSW) method is a hyperreduction method originally developed for accelerating the performance of Galerkin projection-based reduced-order models (PROMs) associated with large-scale finite element models, when the underlying projected operators need to be frequently recomputed as in parametric and/or nonlinear problems. In this paper, this hyperreduction method is extended to Petrov-Galerkin PROMs where the underlying high-dimensional models can be associated with arbitrary finite element, finite volume, and finite difference semi-discretization methods. Its scope is also extended to cover local PROMs based on piecewise-affine approximation subspaces, such as those designed for mitigating the Kolmogorov $n$-width barrier issue associated with convection-dominated flow problems. The resulting ECSW method is shown in this paper to be robust and accurate. In particular, its offline phase is shown to be fast and parallelizable, and the potential of its online phase for large-scale applications of industrial relevance is demonstrated for turbulent flow problems with $O(10^7)$ and $O(10^8)$ degrees of freedom. For such problems, the online part of the ECSW method proposed in this paper for Petrov-Galerkin PROMs is shown to enable wall-clock time and CPU time speedup factors of several orders of magnitude while delivering exceptional accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源