论文标题

在$ n $ n $ dripialities of Classical和virtual结中

On $n$-trivialities of classical and virtual knots for some unknotting operations

论文作者

Ito, Noboru, Sakurai, Migiwa

论文摘要

在本文中,我们引入了一种新的非平凡过滤,称为F-order,用于古典和虚拟结。这种过滤会产生过滤的结不变性,称为有限类型不变式,类似于Vassiliev结的不变性。由Goussarov,Polyak和Viro引入的有限类型不变性是众所周知的,我们称它们为GPV订单的有限类型不变性。我们表明,对于任何积极的整数$ n $,对于任何经典的打结$ k $,都存在无限的许多非平凡的经典结,所有的gpv订单$ <n $ varemiants均与$ k $(Theorem 1)相吻合。此外,我们表明,对于任何积极的整数n,都存在一个非平凡的虚拟结,其F级$ <n $的有限型不变性与琐碎结(定理2)相吻合。为了证明定理1(定理2,分别),我们通过某个无结的操作(称为虚拟化(禁止移动,分别))定义了n-平地,并且对于任何正整数n,找到一个N-琐事的经典结(虚拟结,virtual knot,spess。)。

In this paper, we introduce a new nontrivial filtration, called F-order, for classical and virtual knot invariants; this filtration produces filtered knot invariants, which are called finite type invariants similar to Vassiliev knot invariants. Finite type invariants introduced by Goussarov, Polyak, and Viro are well-known, and we call them finite type invariants of GPV-order. We show that for any positive integer $n$ and for any classical knot $K$, there exist infinitely many of nontrivial classical knots, all of whose finite type invariants of GPV-order $< n$, coincide with those of $K$ (Theorem 1). Further, we show that for any positive integer n, there exists a nontrivial virtual knot whose finite type invariants of our F-order $< n$ coincide with those of the trivial knot (Theorem 2). In order to prove Theorem 1 (Theorem 2, resp.), we define an n-triviality via a certain unknotting operation, called virtualization (forbidden moves, resp.), and for any positive integer n, find an n-trivial classical knot (virtual knot, resp.).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源