论文标题
内部理想和可结构的代数:Moufang集,三角形和六角形
Inner ideals and structurable algebras: Moufang sets, triangles and hexagons
论文作者
论文摘要
我们使用从可结构的代数通过山雀(kantor-koecher构造)获得的lie代数的内部理想来构建Moufang集,Moufang三角形和Moufang Hexagons。我们使用的三种不同类型的可结构代数分别是: (1)可结构的分区代数, (2)代数$ d \ oplus d $用于某些替代部代数$ d $,配备了交易所互动, (3)矩阵可结构的代数$ m(J,1)$ for某些立方Jordan division代数$ J $。 在每种情况下,我们还直接根据可结构的代数确定根组。
We construct Moufang sets, Moufang triangles and Moufang hexagons using inner ideals of Lie algebras obtained from structurable algebras via the Tits--Kantor--Koecher construction. The three different types of structurable algebras we use are, respectively: (1) structurable division algebras, (2) algebras $D \oplus D$ for some alternative division algebra $D$, equipped with the exchange involution, (3) matrix structurable algebras $M(J,1)$ for some cubic Jordan division algebra $J$. In each case, we also determine the root groups directly in terms of the structurable algebra.