论文标题
théorie逆De Galois sur les corps des cortions tormations tordus tordus
Théorie inverse de Galois sur les corps des fractions rationnelles tordus
论文作者
论文摘要
在本文中,我们证明,如果$ h $是中心$ k $和$σ$有限订单的$ h $的自动形态的偏斜领域理性分数。此外,如果$ k^{\langleσ\ rangle} $包含一个真实的封闭字段或残留特性的亨瑟利安字段$ 0 $,并包含所有Unity的根源,则可数级$ \ wideHat {f}_Ω$的profree Grout组是$ h(t,t,t,tement)。
In this article, we prove that if $H$ is a skew field of center $k$ and $σ$ an automorphism of finite order of $H$ such that the fixed subfield $k^{\langle σ\rangle}$ of $k$ under the action of $σ$ contains an ample field, then the inverse Galois problem has a positive answer over the skew field $H(t,σ)$ of twisted rational fractions. Moreover, if $k^{\langle σ\rangle}$ contains either a real closed field, or an Henselian field of residue characteristic $0$ and containing all roots of unity, then the profree group of countable rank $\widehat{F}_ω$ is a Galois group over $H(t,σ)$.