论文标题

在线体重自适应非线性模型预测控制

Online Weight-adaptive Nonlinear Model Predictive Control

论文作者

Kostadinov, Dimche, Scaramuzza, Davide

论文摘要

非线性模型预测控制(NMPC)是在约束下用于非线性动态过程控制的强大且广泛使用的技术。在NMPC中,相应状态和控制成本的状态和控制权重通常是基于人类专家知识选择的,这通常反映了实践中可接受的稳定性。尽管广泛使用,但这种方法可能不是最低位置误差且对预测控件的“平滑”变化的轨迹的最佳选择。此外,尚未对NMPC进行在线重量更新策略,以实现快速,敏捷和精确的无人机导航,但尚未进行广泛研究。为此,我们提出了一种新颖的控制问题公式,允许在线更新状态和控制权重。作为解决方案,我们提出了一种由两个交替阶段组成的算法:(i)状态和命令变量预测以及(ii)权重更新。我们提出了数值评估,并对四型导航问题的不同权衡进行比较和分析。我们的计算机仿真结果显示,与具有固定权重的NMPC的标准解决方案相比,执行轨迹的准确性高达70%。

Nonlinear Model Predictive Control (NMPC) is a powerful and widely used technique for nonlinear dynamic process control under constraints. In NMPC, the state and control weights of the corresponding state and control costs are commonly selected based on human-expert knowledge, which usually reflects the acceptable stability in practice. Although broadly used, this approach might not be optimal for the execution of a trajectory with the lowest positional error and sufficiently "smooth" changes in the predicted controls. Furthermore, NMPC with an online weight update strategy for fast, agile, and precise unmanned aerial vehicle navigation, has not been studied extensively. To this end, we propose a novel control problem formulation that allows online updates of the state and control weights. As a solution, we present an algorithm that consists of two alternating stages: (i) state and command variable prediction and (ii) weights update. We present a numerical evaluation with a comparison and analysis of different trade-offs for the problem of quadrotor navigation. Our computer simulation results show improvements of up to 70% in the accuracy of the executed trajectory compared to the standard solution of NMPC with fixed weights.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源