论文标题
在分层流的垂直定期模拟中量化混合和可用的势能
Quantifying mixing and available potential energy in vertically periodic simulations of stratified flows
论文作者
论文摘要
湍流混合对海洋的许多物理过程产生重大影响。在稳定的分层的Boussinesq流体中,这种不可逆的混合描述了可用势能(APE)向背景势能(BPE)的转化。在某些情况下,很难应用APE框架,并且使用近似措施来估计不可逆的混合。例如,分层湍流的数值模拟通常使用三重周期域来提高计算效率。但是,在此设置中,BPE并不是唯一的定义,以及Winters等人的方法。 (1995,J。FluidMech。,289)无法直接应用于计算APE。我们提出了一种新技术,以平均分层计算周期域中的猿类。通过定义由恒定浮力表面界定的控制量,我们可以构建适当的背景浮力曲线$ b_ \ ast(z,t)$,并在此类系统中准确量化Diapycal的混合。该技术还允许准确计算周期域中有限的局部猿密度。在各种湍流流动模拟中分析了猿的演变。我们表明,浮力方差的平均耗散率$χ$也可以与平均二元混合速率相吻合,即使在局部分层有显着变化的流动中也是如此。当量化瞬态流中混合效率的度量时,我们发现显着变化,具体取决于平均流量的层流扩散是否包括在动能耗散速率中。我们讨论如何在量化真实海洋学中量化的二比扩散率的背景下最好地解释这些结果。
Turbulent mixing exerts a significant influence on many physical processes in the ocean. In a stably stratified Boussinesq fluid, this irreversible mixing describes the conversion of available potential energy (APE) to background potential energy (BPE). In some settings the APE framework is difficult to apply and approximate measures are used to estimate irreversible mixing. For example, numerical simulations of stratified turbulence often use triply periodic domains to increase computational efficiency. In this setup however, BPE is not uniquely defined and the method of Winters et al. (1995, J. Fluid Mech., 289) cannot be directly applied to calculate the APE. We propose a new technique to calculate APE in periodic domains with a mean stratification. By defining a control volume bounded by surfaces of constant buoyancy, we can construct an appropriate background buoyancy profile $b_\ast(z,t)$ and accurately quantify diapycnal mixing in such systems. This technique also permits the accurate calculation of a finite amplitude local APE density in periodic domains. The evolution of APE is analysed in various turbulent stratified flow simulations. We show that the mean dissipation rate of buoyancy variance $χ$ provides a good approximation to the mean diapycnal mixing rate, even in flows with significant variations in local stratification. When quantifying measures of mixing efficiency in transient flows, we find significant variation depending on whether laminar diffusion of a mean flow is included in the kinetic energy dissipation rate. We discuss how best to interpret these results in the context of quantifying diapycnal diffusivity in real oceanographic flows.