论文标题
古典Weyl群的奇数,甚至主要的索引和一维字符
Odd and even major indices and one-dimensional characters for classical Weyl groups
论文作者
论文摘要
我们定义和研究经典Weyl群的主要指数统计数据的奇数甚至类似物。更确切地说,我们表明,这些统计数据的生成功能是由相应组的一维特征扭曲的,总是以明确的方式进行考虑。特别是,我们获得了carlitz身份的奇怪甚至类似物,Gessel-Simion定理,以及WACHS结果的抛物线延伸和细化。
We define and study odd and even analogues of the major index statistics for the classical Weyl groups. More precisely, we show that the generating functions of these statistics, twisted by the one-dimensional characters of the corresponding groups, always factor in an explicit way. In particular, we obtain odd and even analogues of Carlitz's identity, of the Gessel-Simion Theorem, and a parabolic extension, and refinement, of a result of Wachs.